

Applying multidisciplinary capability

is inherent in our broad program and workforce base

FY15 est. Budget Authority: \$2.15B

Approx. 10,000 National Security specialists collaborate on a 36-sq.-mile site in a wide variety of technical disciplines

R&D Disciplines

As a National Security Scientific Laboratory, Los Alamos maintains broad and deep STE capabilities for multi-program leverage

Stockpile Stewardship

Weapons Assessment
Nondestructive laser gas sampling

Plutonium Science
Metallurgy

Global Security

Research Reactor
Conversion
High flux isotope reactor

Terahertz Metamaterials
Electromagnetic wave polarization
and propagation

Energy Security

A robust ecosystem for scientific vitality and mission impact

Reciprocal pipelines of People, Ideas, Partnerships

Fundamental Science Program

Aligns innovative capability with strategic program directions

Community Involvement

- Conferences
- Professional Service

International User Facilities

Center for Integrated Nanotechnologies

National High Magnetic Field Laboratory

Los Alamos Neutron Science Center

SCIENTIFIC VITALITY

UNCLASSIFIED

by Los Alamos National Security, LLC for the U.S. Department of Energy

National Security Education Center

- Institutes
- Students
- Postdocs

Strategic Partnerships

- Agencies
- Universities
- Labs
- Industry

Mission Facilities

Los Alamos leverages its intellectual assets through strategic 'win-win' partnerships

Technology Transfer

"Results from our reliability technology partnership with Los Alamos will reduce costs by \$1.5B annually."

-Mark Peterson, Procter & Gamble

Labs & Universities

International Partnerships

Japanese Ministry of Technology (NEDO) with Los Alamos County

New Mexico Consortium

PRObe
Supercomputing
Center ribbon-cutting

Our partnerships are strategic and diverse, e.g.

Science of sensors extend to multiple applications

Remote sensing and detection have applications everywhere — from Mars Rover to non-proliferation, space, defense, and intelligence.

Global partners advance AIDS research

Los Alamos developed the "mosaic vaccine" concept: a predictive framework

to identify the most active epitopes in the immune system response and apply to a vaccine strategy.

We provide databases, theory,

simulation, and high-performance computing design tools to the Global HIV Vaccine Enterprise and the CHAVI Consortium.

Los Alamos Science, Technology & **Engineering Capability Pillars**

Build cross-disciplinary teaming experience and confidence for current and future missions

SCIENTIFIC EXCELLENCE FOR NATIONAL SECURITY

LANL Missions

Nuclear Deterrence

Global Security **Energy & Emerging Threats**

and Technology

Particle Futures

Los Alamos Materials Strategy —

The result of a many-decade iteration of STE & Missions

The Materials Capability Pillar advances our vision to develop materials with "controlled functionality" to provide solutions enabling Los Alamos' missions

Thrusts define the Areas of Leadership for the Materials Pillar

Actinide and Correlated Electron Materials

- Understanding and controlling emergent electronic states
- Actinide materials science center of excellence
- Predicting and controlling plutonium aging and lifetime

Integrated Nanomaterials

- Center for Nanophotonics
- Center for Strategic Nanomaterials

Materials in Radiation Extremes

- Advanced nuclear fuels nuclear waste materials
- Advanced radiation temperature tolerant structural materials

Energetic Materials

- Prediction and control of explosives safety, initiation, and performance
- Invent and utilize revolutionary diagnostics

Materials Dynamics

- Linking material microstructure to macroscopic behavior under dynamics deformation conditions
- Prediction and control of dynamic processes
- Next generation diagnostics, dynamic drivers, and predictive models

Complex Functional Materials

- Bio-inspired materials
- Materials for energy conversion, storage, and transmission

We are not alone in our interest in "microstructure to performance" —

Los Alamos is involved broadly with the community

The "mesoscale" challenge is to observe the dynamic evolution of polycrystalline materials at the granular and sub-granular level

log time (seconds)

Sub- μ m resolution 100's – 1000's μ m samples; Sub-ns resolution, ~30 frames in1 μ s duration

meso2012.com

science.energy.gov

Materials Genome

Whitehouse.gov

Advanced (including Additive) Manufacturing:

Prediction and control of manufacturing processes

— bringing "Science," "Engineering" & "Manufacturing" closer —

Lightweight materials
Advanced photonics
Biomanufacturing

Integrated
Computational
Materials
Engineering

Energy futures/extraction
Intelligent manufacturing
Advanced fabrication
technologies

QUALIFICATION & CERTIFICATION

Manufacturing Processes – Prototype to Large-scale

Sensors/Diagn ostics for Control

Los Alamos' Plutonium S&R Strategy supports National Plutonium Stewardship

Many experiments at national user facilities enabled by special isotopes and radiological facilities

- n-scattering on ²⁴²PuCoGa₅ single crystals and δ-²⁴²Pu at LANSCE, NIST, and SNS (30 g Pu)
- Produced ~1 mm single crystal grains of δ-Pu
- Determination of multi-configurational ground states in α & δ-Pu
- X-ray Emission (XES) under pressure shows 6d/5f hybridization
- Observed Fermi surface pocket in Puln₃ single crystals
- Discovery of Superconductivity in PuCoIn₅ and PuRhIn₅
- Full elastic tensor of ²⁴²PuCoGa₅ via Resonant Ultrasound Spectroscopy (RUS)

Eric Bauer

Los Alamos has a distinguished 70-year supercomputing history

Fidelity at scale: Data-informed, "adaptive-physics," multi-scale simulation tools essential for "complex systems"

Examples:

BIOLOGICAL MACHINES

MATERIALS

The future of Materials Science:

Control science via integration

Control Science

Accelerated materials discovery and design

Integration

- Key to prediction of material properties
- Theory and models that take function to structure
- Synthetic control of defects and interfaces
- Characterization of the evolution of defects and interfaces in multiple extremes to provide feedback

National Security and Prosperity in the "Century of Complexity"

Building on Los Alamos' 70-year heritage

Mission Complexity

Nuclear Deterrence

Climate Change

Global Resources

Contested/ Congested Space

Environment

Health

 $Data \rightarrow Knowledge \rightarrow Control;$

Quantitative tools for decision-makers/risk assessment

ST&E Complexity

Science of prediction

8

Uncertainty quantification

Methodologies for

Complex Natural & Engineered Systems

- Strategic deterrence
- Complex materials,
 Advanced manufacturing
- Energy, climate, environment
- Biological systems
- Space
- Cyber

The Pivot to Asia

Climate Change

Allies Seeking
Assurances
of US Guarantees

Ukraine – Russian Incursion

Global Pandemics

Contested Space

Instability

National Security challenges & technologies are accelerating: How Los Alamos works is needed more than ever for national security ... and prosperity

NEW MISSIONS:

Global Security, Energy Security, Economic Competitiveness...

Spin-Off Innovations

- Global Climate Modeling
- Computational Co-Design
- Robotic Telescopes
- Advanced Biofuels ...

Outstanding Application to Programs

- Predicting Materials Properties
- Nuclear Forensics
- Systems Biology
- UncertaintyQuantification...

Strategic Partnerships

Unique Missions

 Stockpile Stewardship, Nuclear Nonproliferation

Special Blend of Capabilities and Facilities

- Computational Fluid Dynamics
- Proton Radiography
- Nuclear Materials& Chemistry
- Space Sciences...

Backup Slides

Los Alamos Nurtures and Exercises very broad and deep ST&E capabilities supporting national security missions and national needs

Nuclear Engineering and Technology

Accelerators & Electrodynamics

Materials

Information Science & Technology

Weapons Science & Engineering

Biosciences

Stockpile Stewardship

Science & **Engineering** Capabilities

Science of **Signatures**

Nuclear Physics, Astrophysics & Cosmology

Computer & Computational **Sciences**

High-Energy Density Plasmas & Fluids

Computational Physics & Applied Mathematics

Sciences

"The Century of Complexity" (S. Hawking)

Cosmology: Filaments, Clusters, and Voids

Magnetic Reconnection

Science @ Scale

Systems of connected functional scales space, time; Emergent functions; Extreme conditions

Enabled by huge advances in Data, Simulation, Nonlinear Science...

BUT....

? Origins, Measures, Consequences ?

Multiscale Modeling, Simulating, Measuring ≠...at Multiple Scales: Need IS&T

Communication Networks

Protein Dynamics

Fluid Turbulence

Shocked Metals

A national STE management challenge:

How we do business to impact national imperatives

- A framework of integration and collaboration for transformational ST&E at Science & Mission Frontiers
- LANL opportunities being developed: NW predictive capability framework, energy-climate, environmental, cyber, Advanced Manuf., Materials Genome ... Supercomputing, MaRIE

What should next-generation facilities and campuses look like?

DOE (SC, NNSA, App. Energy) has a full spectrum of assets for the future Integrating National Assets for Discovery, Prediction, Control, Design, Mitigation

Los Alamos' long history of moving technologies to products

rograms

Curiosity (Rover)

ChemCam

Radioisotope Thermoelectric generator (RTG)

Hydrogen & Fuel Cells

Electrode Los Alamos Type (ELAT)

Battlefield Power

Products

Flow Cytometry Attune Acoustic Cytometer

Radio Frequency Identification

RFID developed for DOE, USDA, transitioned worldwide

oftware

Image/Pattern Recognition

GeniePro (tumor identification)
MrSID (Geographic imaging)

Manufacturing

Reliability Technology/PowerFactoRE (manufacturing reliability KIVA (Computational Fluid Dynamics)

Los Alamos has been a pioneer of computing for 70 years (vector, parallel, hybrid...): Interdisciplinary integration and mission drivers

IBM 405: 1943

TMC CM-5:1992

Cielo: Today, ...

Accurate Solution of **Models**

Data (Simulation & Measurement) **Driven Models**

> Validation & Verification

Insight, Guidance for Experiment & Theory

Data Science

Uncertainty Quantification for Complex Systems

- Multiscale, Multiphysics
 - Rare/Extremal Events

Robust Tools for Decision Makers

UNCLASSIFIED

Los Alamos continues its 70-year supercomputing history

The Laboratory is a leader in providing the computing environment, systems, and technologies that support the evolution to exascale-class computing

Trinity — Cray will provide DOE-NNSA with a > 40 petaflop supercomputing system (FY16)

The Wolf computing system operates at 197 teraflops per second (86.3 million CPU core hours per year)

Research projects to use Wolf include materials, climate, and astrophysics

Institutional Computing provides production-computing resources for open and collaborative science at LANL

Six "Areas of Leadership" span the Materials Pillar

Actinide & Correlated Materials in Electron Materials Radiation **Extremes Materials Complex Dynamics Functional Materials** Integrated **Nanomaterials Energetic Materials**

Embracing functional complexity in materials

Los Alamos missions have driven multi-decadal influences on Materials frontiers

Material Science History

From observing complex textures

To including lattice (& spin/charge) dynamics functionality (entropy)

Solid State Physics History

From

spin/charge/lattice in idealized structures

To observing and using multiscale structure and dynamics

"1975"

Remarkable Advances

Spatio-Temporal characterization tools (neutrons, protons, light, spectroscopy...)

Synthesis

(single crystal, films, q-dots...)

Simulations and Algorithms (MC, MD, ab initio QM...)

New Conceptual Frameworks

Competing Scales

Constrained Geometry

Reduced Dimensions

Nonlinear

Non-equilibrium

• • •

Scientific Community Themes

Correlated Matter

Multiscale

Mesoscopics

Nano

. . .

Mesoscale

Materials Genome

Process-Aware Manufacturing

Additive Manufacturing

• •

"2015"

Tuning functional multiscale complexity in "soft (electronic) matter":

Organic, inorganic, biological

NEED: Tools to probe complexity and a framework for understanding/controlling responses and applications (cf. US DOE-BES "Mesoscale Initiative")

Observing & Controlling Intrinsic Complexity

Coupled

Spin-Charge-Lattice; Short-Long Competition; Geometric Frustration

Strongly correlated, intrinsically soft, multiscale, glassy;

Aging, Healing, Learning

Systems/Networks
of connected,
functional scales
(structural and
electronic/magnetic/optical)

Remarkable emerging capabilities: Spatio-temporal scales

THEORY/SIMULATION

Quantum Mechanics/ Molecular Mechanics (QM/MM) modeling

- Treats large segments of material
- Realistic dielectric environment

Advanced transport models

- Use parameters derived from the electronic structure calculations
- Fully multiscale modeling

EXPERIMENT

THz Near-Field Scanning Optical Microscope (THz - NSOM)

- Under 100-nm spatial resolution (i.e., local conductivity)
- Probe charge dynamics on <1-ps time scales

Optical NSOM/ Atomic Force Microscope (AFM)

 Correlate optical response (Raman, PL, TRPL) and morphology with <50-nm spatial resolution

Simultaneous Optical-Electrical Characterization Capability

- Correlate optical responses with charge separation/photocurrent generation efficiencies
- Probe existence of interfacial CTC states

Optically Detected Magnetic Resonance (ODMR) spectroscopy

- Direct measurement of the spatial wave function extent of charges (polarons)
- Detailed information on the various spin states (e.g., triplets)
- Useful tool for many spintronics investigations

Los Alamos' Energy Security Plan identifies areas of strategic focus and DOE alignment

★ Materials and Concepts for Clean Energy

- Enabling new sources of energy and more efficient utilization
- Generating novel technologies for the production and use of fossil energy

★Sustainable Nuclear Energy

- Understanding the lifetime of fuels and components, safety options, disposal of waste and long-term storage, and remediation of environmental impact
- Creating advanced technology for existing reactors and new concepts in nuclear power generation

★ Mitigating Impacts of Global Energy Demand Growth

- Developing predictive tools for climate, earth, and water systems, including their impacts on communities and infrastructure
- Creating and deploying measurement systems, and integrating data at all length scales to verify models and inform decisions

LANL has many unique facilities

Metropolis Center for Modeling & Simulation

High Explosive Laboratories

Los Alamos Neutron Science Center

Chemistry and Metallurgy Building

Dual Axis Radiographic Hydrotest Facility

Plutonium Processing Facility

Chemistry & Metallurgy Research
Replacement (RLUOB)

SIGMA Building

...and

many

more!